The ECOSPAN® Composite Floor System
The ECOSPAN® Composite Floor System

The ECOSPAN® Composite Floor System is an innovative, simple, effective and economical method of provided all steel, open web structural components for elevated floor construction while incorporating the benefits of lighter weight composite design. ECOSPAN® requires only a nominal 3 inch thick, 3000 psi concrete slab.

The open web configuration and 48” o.c. joist spacing allows HVAC and electrical design flexibility. ECOSPAN® requires no stripping of formwork and no shoring.
The ECOSPAN® Composite Floor System

Consider the Advantages:

- Ecospan is an effective and economical solution for constructing residential and commercial floor systems.
- Erection is safe, easy, and cost effective. There are no short deck sheets, plywood forms or shoring; sub-trades can normally continue construction the day after the concrete is placed.
- Floor to floor heights can often be decreased due to the inherent ability to pass mechanical ducts, piping, conduit, etc. through the open web design.
- High strength to weight ratio of composite steel joists allows for greater spans and spacing with lighter members.
- Weight savings due to composite joist design reduces building weight and allows foundation and wall costs to be reduced.
- Constructed with non-combustible materials, achieving multiple UL Fire Rating listings with gypsum board, acoustical ceilings, or spray applied fire resistant materials.
- The Ecospan Composite Floor System has a Sound Transmission Classification (STC) of 57 and meets or exceeds Impact Insulation Classification (IIC) requirements of the IBC for residential and commercial construction with commonly used sound attenuation materials.
The **ECOSPAN®** Composite Floor System

Environmental Advantages:

- The Ecospan Composite Floor System may contain a significant portion of recycled material which may be beneficial in achieving environmental certification, such as LEED, for your project. Please contact your Ecospan representative or visit: www.Nucor.com/responsibility/sustainability/compliance/leed/ for recycled content information.
Basic Design Philosophy

Load carrying capacity of joist and slab acting separately is less than when acting together

As a composite section, compression is carried by the concrete and tension by the bottom chord, maximizing the effective depth and increasing the capacity of the floor system.
Composite Joist

Steel joists and concrete used in composite construction act as a unit creating an assembly that is stronger than each of the materials acting independently. As seen in Figure 2-3, the effective depth (d_{ef}) of the composite section is larger than the non-composite section because the post composite compression forces are resisted by the concrete, not the top chord of the joist. Flexural strength of the assembly is increased proportionally with the increase in d_{ef}. This increase allows longer spans for the same total framing depth.

2.3.1 Development of Composite Action

The equal and opposite forces acting in the concrete and bottom chord of the joist create a couple to resist the bending moment in the section. However, there must be a mechanism to transfer this horizontal shear force between the concrete and steel sections.

The Ecospam® Composite Joist System utilizes the *Shearflex® stand-off screw* to transfer the horizontal shear forces from the joist top chord into the concrete. The Shearflex® screws are installed into the top chord of the joist through the steel deck and cast into the concrete slab.
The ECOSPAN® Composite Floor System

Joint Span Capacity

Ecspan® composite floor joists are designed to meet the requirements specified in the Contract Documents. Information supplied by the Design Professionals via the Design Parameters Checklist for E-series Joists (see Section 2.6) will be used by Vulcraft Engineers to design E-series Joists and develop placement plans.

E-series joists are capable of reaching a span-to-depth ratio of 1:30 and still meet the serviceability requirements of most floors.

\[
\frac{\text{span (inches)}}{30} = \frac{\text{span (feet)}}{36}
\]

E-Series Joist Maximum Span Chart (ft)

<table>
<thead>
<tr>
<th>Typical Loading</th>
<th>Residential Loading</th>
<th>Commercial Loading</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Load = 112 PSF</td>
<td>Total Load = 358 PSF</td>
<td></td>
</tr>
<tr>
<td>Live Load = 55 PSF</td>
<td>Live Load = 100 PSF</td>
<td></td>
</tr>
<tr>
<td>NC Dead Load = 42 PSF</td>
<td>NC Dead Load = 43 PSF</td>
<td></td>
</tr>
<tr>
<td>Composite Dead Load = 15 PSF</td>
<td>Composite Dead Load = 15 PSF</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Depth (in)</th>
<th>On Center Joist Spacing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4'-0"</td>
</tr>
<tr>
<td>TYPICAL LOADING (lb/ft)</td>
<td>642/642/640/90</td>
</tr>
<tr>
<td>10E</td>
<td>25'</td>
</tr>
<tr>
<td>12E</td>
<td>30'</td>
</tr>
<tr>
<td>14E</td>
<td>35'</td>
</tr>
<tr>
<td>16E</td>
<td>40'</td>
</tr>
<tr>
<td>18E</td>
<td>45'</td>
</tr>
<tr>
<td>20E</td>
<td>50'</td>
</tr>
<tr>
<td>22E</td>
<td>52'</td>
</tr>
<tr>
<td>24E</td>
<td>54'</td>
</tr>
<tr>
<td>26E</td>
<td>57'</td>
</tr>
<tr>
<td>28E</td>
<td>59'</td>
</tr>
<tr>
<td>30E</td>
<td>60'</td>
</tr>
</tbody>
</table>

Notes:

1. Assumed 36/4 attachment pattern
2. Assumed 1.00/4 (3.5" total) for Residential
3. Assumed 1.5V/22 (4.0" total) for Commercial
4. Joists ranging from 10'-14" deep are assumed red web joists, while joists 16" deep may be crimped or uncrimped angle web joists
Typical ECOSPAN® System

Figure 1-1: The Ecospan Composite Floor System
Components of ECOSPAN®

- E-series Open Web Joist
- Bridging
- Steel Deck:
 - non composite - 1.0C
 - Composite - 1.5VL, 2VL, 3VL
- Closures:
 - Pourstop
 - Z-Closure
 - Cell Closure
 - E-Closures
- Shearflex HD Screw (self-drilling, self-tapping)
- Drill Bolt (1/4” self-drilling, self-tapping)
- TeK Screws (#10,#12, etc.)
E-Series joists are detailed and produced using the same practices and base materials that Vulcraft uses to produce K-series or CJ-series joists. The top and bottom chords are double angles and the web members are either solid rounds, crimped or uncrimped angles, or solid rectangular stock depending on the joist span, joist depth and supported loads. Figure 3-1 below illustrates the typical configuration of E-series joist utilizing a flush seat on the left end and an extended bearing seat on the right. Design Professionals should be familiar with the standard nomenclature used to specify and detail open-web joists, as the E-series permits a larger range of seat configurations and bearing conditions.
The ECOSPAN® Composite Floor System

Joist Bearing Conditions/Supporting Members:

- Cold-Formed Steel Studs (CFS)
- Standard Seat on Structural Steel
- Flush Seat on Structural Steel
- Grouted CMU
- Concrete
- Insulated Concrete Forms (ICF)
ECOSPAN® Joist

E-Series Joist Bearing Seat Configurations:

Figure 3-2: Standard Bearing Seat

Figure 3-3: Extended Bearing Seat

Figure 3-4: Gapped Bearing Seat

Figure 3-5: Flush Bearing Seat
The ECOSPAN® Composite Floor System

Bridging

Installation - Bridging

Bolted/Screwed Horizontal & Diagonal Bridging: Snug tighten bolted/Screwed horizontal and diagonal bridging.

Welded Horizontal Bridging: Lap bridging a minimum of 3 inches. Connect bridging to joist with a minimum of 1/8 inch fillet weld 1/2 inch long. Use drops where possible.

Welded Diagonal Bridging: Weld at intersection with a minimum 1/8 inch fillet weld 1 inch long or equivalent.

Typically (1) or (2) rows of bridging will be required per bay. Locate bridging as shown on the Field Use Erection Drawings. If more than one row is required, locate bridging equally spaced along the joist.
The ECOSPAN® Composite Floor System

Deck Types

1.0C Conform Deck

1.5 VL, VLI Composite Deck
The **ECOSPAN®** Composite Floor System

Closures

- **Pour Stop**
- **Z-closure**
- **Cell Closure**

E-closure
The ECOSPAN® Composite Floor System

Shearflex® HD Screw

✓ Self-drilling and self-threading stand-off screw
✓ Dual process heat treated
✓ Installs with standard screw gun in approximately 8 seconds
✓ 5/16” diameter
✓ Capacity depends on chord thickness
✓ Uniform pattern typically utilized
The **ECOSPAN® Composite Floor System**

✓ Provides multiple Fire Ratings for 1, 2, & 3 hours.

UL Fire Ratings

The Ecospan® Composite Floor System is listed by Underwriters Laboratories Inc. with multiple Fire Ratings for Acoustical and Gypsum ceiling applications. The most common UL codes encountered in construction utilizing the Ecospan® Composite Floor System are listed with bold type in Table 4-1. Figures 4-1 through 4-2 illustrate examples of fire rated assemblies.

<table>
<thead>
<tr>
<th>UL Code</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>*Design No. G661</td>
<td>Direct Applied and/or Suspended Gypsum Board Ceiling</td>
</tr>
<tr>
<td>Design No. G213</td>
<td>Suspended Acoustical Ceiling</td>
</tr>
<tr>
<td>Design No. G227</td>
<td>Suspended Acoustical Ceiling</td>
</tr>
<tr>
<td>*Design No. G229</td>
<td>Suspended Acoustical Ceiling</td>
</tr>
<tr>
<td>Design No. G236</td>
<td>Suspended Acoustical Ceiling</td>
</tr>
<tr>
<td>Design No. G243</td>
<td>Suspended Acoustical Ceiling</td>
</tr>
<tr>
<td>Design No. G222</td>
<td>Suspended Gypsum Board Ceiling</td>
</tr>
<tr>
<td>Design No. G547</td>
<td>Suspended Gypsum Board Ceiling</td>
</tr>
<tr>
<td>*Design No. G710</td>
<td>Spray-on Fire Proofing</td>
</tr>
<tr>
<td>Design No. N789</td>
<td>Spray-on Fire Proofing</td>
</tr>
<tr>
<td>*Design No. D902</td>
<td>Unprotected Comp. Deck in Corridor Areas</td>
</tr>
<tr>
<td>*Design No. D916</td>
<td>Unprotected Comp. Deck in Corridor Areas</td>
</tr>
<tr>
<td>Design No. D918</td>
<td>Unprotected Comp. Deck in Corridor Areas</td>
</tr>
<tr>
<td>Design No. D919</td>
<td>Unprotected Comp. Deck in Corridor Areas</td>
</tr>
</tbody>
</table>

Most commonly utilized UL Ratings
The ECOSPAN® Composite Floor System

✓ Helps form the LDM, the concrete Load Distribution Member.
The ECOSPAN® Composite Floor System

The LDM can be used:

Here at the interior...

Or here at the exterior.

The concrete load distribution member is formed through the use of the two E-closures or Z-closures at the interior bearing walls or the E-closure and the pour stop at the exterior bearing wall. The standard assembly of Ecospan® components creates a 6 inch x 8 inch continuous concrete form which when properly detailed, reinforced and filled with concrete creates the concrete load distribution member.
The ECOSPAN® Composite Floor System

The Concrete LDM Structural Benefits:

✓ A concrete load distribution member is a structural element that doles out vertical floor or roof loads. LDMs deliver these gravity loads to supporting load bearing CFS studs without requiring alignment of the bearing wall framing components. This saves time and coordination efforts for panelized or field framed structures.

✓ The LDM provides redundancy and structural robustness not available in standard CFS bearing wall construction. By engaging additional load paths, the LDM provides maximum structural benefits resulting in the framing economies for CFS bearing walls. Design and construction professionals will have greater flexibility in the placement of joist and wall stud framing from level to level.

✓ The slab and concrete LDM are poured monolithically and provide a seamless transition for gravity and lateral forces.

✓ The LDM also provides a solid barrier to help with sound attenuation and serves as a fire wall.
The ECOSPAN® Composite Floor System

Open Plenum for MEP
The ECOSPAN® Composite Floor System

Ideal for MEP Placement Within Plenum Space
The ECOSPAN® Composite Floor System

TYPICAL USAGE:

- Apartments & Condominiums
- Senior Living & Eldercare Facilities
- Student Housing & Schools
- Hotels & Resort Buildings
- Military Housing & Facilities
- Office Buildings
- Medical Facilities
- Mezzanines
The ECOSPAN® Composite Floor System
Design Manuals